Conductive polymer nanocomposite incorporated with carbon nanotubes for effective electromagnetic interference shielding: A numerical study
Prakhar Dubey
Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
Search for more papers by this authorMadhur Gupta
Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
Search for more papers by this authorCorresponding Author
S. I. Kundalwal
Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
Correspondence
S. I. Kundalwal, Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
Email: [email protected]
Search for more papers by this authorPrakhar Dubey
Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
Search for more papers by this authorMadhur Gupta
Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
Search for more papers by this authorCorresponding Author
S. I. Kundalwal
Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
Correspondence
S. I. Kundalwal, Applied and Theoretical Mechanics (ATOM) Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
Email: [email protected]
Search for more papers by this authorAbstract
This study presents a comprehensive numerical investigation of the electromagnetic interference (EMI) shielding capabilities of a conductive polymer nanocomposite incorporated with carbon nanotubes (CPNC) in the X-band. The investigation is conducted using a commercial finite element simulation package, Ansys HFSS. The study focuses on analyzing the EMI shielding effectiveness (SE) of CPNC by varying the weight percent (wt%) of carbon nanotubes (CNTs), thickness, and shape of the shielding material. Our outcomes show that the EMI SE of CPNC increases with the wt% of CNTs. Notably, a maximum EMI SE is observed around ~90 dB due to absorption (SEA) at a 4 mm pallet-shaped CPNC and ~180 dB for a hollow cylindrical CPNC (22.86 mm outer diameter and 3 mm thickness) with 2 wt% of CNT. The EMI SE due to absorption (SEA) at a pallet thickness of 4 mm exhibits a significant improvement of ~107% compared to the SEA observed at a thickness of 1 mm. These findings highlight the exceptional absorption capabilities and lightweight nature of CPNC, rendering it a promising shielding material for aerospace and satellite communication applications.
Highlights
- EMI SE of CPNC increases with the wt% of CNT in the polypyrrole (PPy) matrix.
- The percolation threshold is observed at a low 2 wt% concentration of CNT.
- Thickness of the shielding material influences the EMI SE of CPNC.
- CPNC provides absorption-dominated shielding.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request due to privacy/ethical restrictions.
REFERENCES
- 1Lapinsky SE, Easty AC. Electromagnetic interference in critical care. J Crit Care. 2006; 21(3): 267-270. doi:10.1016/j.jcrc.2006.03.010
- 2Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC. EMI shielding: methods and materials—a review. J Appl Polym Sci. 2009; 112(4): 2073-2086. doi:10.1002/app.29812
- 3Kondawar SB, Modak PR. Theory of EMI shielding. Materials for Potential EMI Shielding Applications: Processing, Properties and Current Trends. Elsevier; 2020: 9-25. doi:10.1016/b978-0-12-817590-3.00002-6
10.1016/B978-0-12-817590-3.00002-6 Google Scholar
- 4Shooman ML. A study of occurrence rates of electromagnetic interference (EMI) to aircraft with a focus on HIRF (external) high intensity radiated fields, 1994. Report No. NASA-CR-194895. https://ntrs.nasa.gov/citations/19940029450
- 5Zheng X, Zhang H, Liu Z, Jiang R, Zhou X. Functional composite electromagnetic shielding materials for aerospace, electronics and wearable fields. Mater Today Commun. 2022; 33:104498. doi:10.1016/j.mtcomm.2022.104498
- 6Raina HS. Electromagnetic compliance in high power communication satellite payloads. IETE Tech Rev. 2005; 22(4): 273-285. doi:10.1080/02564602.2005.11657911
- 7Thomas TL, Stolley PD, Stemhagen A, et al. Brain tumor mortality risk among men with electrical and electronics jobs: a case-control study. J Natl Cancer Inst. 1987; 79(2): 233-238. doi:10.1093/jnci/79.2.233
- 8Xing J. Electromagnetic radiation on human health hazards and protective measures in modern society. Adv Mater Res. 2012; 518-523: 1022-1026. doi:10.4028/www.scientific.net/amr.518-523.1022
10.4028/www.scientific.net/AMR.518-523.1022 Google Scholar
- 9Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001; 39(2): 279-285. doi:10.1016/s0008-6223(00)00184-6
- 10Yang S, Lozano K, Lomeli A, Foltz HD, Jones R. Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos Part A Appl Sci Manuf. 2005; 36(5): 691-697. doi:10.1016/j.compositesa.2004.07.009
- 11Chakradhary VK, Juneja S, Akhtar MJ. Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite. Mater Today Commun. 2020; 25:101386. doi:10.1016/j.mtcomm.2020.101386
- 12Wang XY, Liao SY, Wan YJ, et al. Electromagnetic interference shielding materials: recent progress, structure design, and future perspective. J Mater Chem C. 2021; 10(1): 44-72. doi:10.1039/d1tc04702g
- 13Gupta TK, Singh BP, Singh VN, et al. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A. 2014; 2(12): 4256-4263. doi:10.1039/c3ta14854h
- 14Gupta M, Meguid SA, Kundalwal SI. Synergistic effect of surface-flexoelectricity on electromechanical response of BN-based nanobeam. Int J Mech Mater Des. 2022; 18(1): 3-19. doi:10.1007/s10999-021-09582-6
- 15Huang Y, Kormakov S, He X, et al. Conductive polymer composites from renewable resources: an overview of preparation, properties, and applications. Polymers. 2019; 11(2): 187. doi:10.3390/polym11020187
- 16Thomassin JM, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep. 2013; 74(7): 211-232. doi:10.1016/j.mser.2013.06.001
- 17Pomposo JA, Rodriguez J, Grande H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synth Met. 1999; 104(2): 107-111. doi:10.1016/s0379-6779(99)00061-2
- 18Yang X, Lu Y. Preparation of polypyrrole-coated silver nanoparticles by one-step UV-induced polymerization. Mater Lett. 2005; 59(19–20): 2484-2487. doi:10.1016/j.matlet.2005.03.033
- 19Gill N, Gupta V, Tomar M, Sharma AL, Pandey OP, Singh DP. Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band. Compos Sci Technol. 2020; 192:108113. doi:10.1016/j.compscitech.2020.108113
- 20Zhao B, Du Y, Yan Z, et al. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv Funct Mater. 2023; 33(1):2209924. doi:10.1002/adfm.202209924
- 21Zhao B, Yan Z, Du Y, et al. High-entropy enhanced microwave attenuation in titanate perovskites. Adv Mater. 2023; 35(11):2210243. doi:10.1002/adma.202210243
- 22Wen C, Li X, Zhang R, et al. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2TxMXene@Ni microspheres. ACS Nano. 2021; 16(1): 1150-1159. doi:10.1021/acsnano.1c08957
- 23Zhao B, Bai Z, Lv H, et al. Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nanomicro Lett. 2023; 15(1): 79. doi:10.1007/s40820-023-01043-3
- 24Zhao B, Li Y, Zeng Q, et al. Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small. 2020; 16(40):2003502. doi:10.1002/smll.202003502
- 25Zhao B, Du Y, Lv H, et al. Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv Funct Mater. 2023; 33(34):2302172. doi:10.1002/adfm.202302172
- 26Chung DDL. Electrical applications of carbon materials. J Mater Sci. 2004; 39(8): 2645-2661. doi:10.1023/b:jmsc.0000021439.18202.ea
- 27Amarasekera J. Conductive plastics for electrical and electronic applications. Reinf Plast. 2005; 49(8): 38-41. doi:10.1016/s0034-3617(05)70734-7
10.1016/S0034-3617(05)70734-7 Google Scholar
- 28Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon. 2009; 47(7): 1738-1746. doi:10.1016/j.carbon.2009.02.030
- 29Gupta M, Ray MC, Patil ND, Kundalwal SI. Effect of orientation of CNTs and piezoelectric fibers on the damping performance of multiscale composite plate. J Intell Mater Syst Struct. 2023; 34(2): 194-216. doi:10.1177/1045389x221099451
- 30Liu S, Qin S, Jiang Y, Song P, Wang H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos Part A Appl Sci Manuf. 2021; 145:106376. doi:10.1016/j.compositesa.2021.106376
- 31Kundalwal SI, Kumar RS, Ray MC. Effective thermal conductivities of a novel fuzzy fiber-reinforced composite containing wavy carbon nanotubes. J Heat Transf. 2015; 137(1):012401. doi:10.1115/1.4028762
- 32Nevhal SK, Gupta M, Kundalwal SI. Influence of flexoelectric effect on the bending rigidity of a Timoshenko graphene-reinforced nanorod. J Mech Behav Mater. 2023; 32(1):20220295. doi:10.1515/jmbm-2022-0295
10.1515/jmbm-2022-0295 Google Scholar
- 33Gupta M, Ray MC, Patil ND, Kundalwal SI. Dynamic modelling and analysis of smart carbon nanotube-based hybrid composite beams: analytical and finite element study. Proc Inst Mech Eng L. 2021; 235(10): 2185-2206. doi:10.1177/14644207211019773
- 34Wang L, Qiu H, Liang C, et al. Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon. 2019; 141: 506-514. doi:10.1016/j.carbon.2018.10.003
- 35Rathi A, Kundalwal SI. Mechanical and fracture behavior of MWCNT/ZrO2/epoxy nanocomposite systems: experimental and numerical study. Polym Compos. 2020; 41(6): 2491-2507. doi:10.1002/pc.25551
- 36Kundalwal SI, Ray MC. Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 2014; 225(9): 2621-2643. doi:10.1007/s00707-014-1095-3
- 37Kundalwal SI, Ray MC, Meguid SA. Shear lag model for regularly staggered short fuzzy fiber reinforced composite. J Appl Mech. 2014; 81(9):091001. doi:10.1115/1.4027801
- 38Kundalwal SI. Review on micromechanics of nano- and micro-fiber reinforced composites. Polym Compos. 2018; 39(12): 4243-4274. doi:10.1002/pc.24569
- 39Bansod PV, Gupta M, Gargama H, Kundalwal SI. Electromechanical response of boron nitride nanosheet reinforced nanocomposite beam: a finite element study. Proc Inst Mech Eng E: J Process Mech Eng. 2023. doi:10.1177/09544089231192336
- 40Liu Z, Bai G, Huang Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon. 2007; 45(4): 821-827. doi:10.1016/j.carbon.2006.11.020
- 41Das NC, Liu Y, Yang K, Peng W, Maiti S, Wang H. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym Eng Sci. 2009; 49(8): 1627-1634. doi:10.1002/pen.21384
- 42Sun C, Peng WJ, Huang ML, Zhao KY, Wang M. Constructing high-efficiency microwave shielding networks in multi-walled carbon nanotube/poly(ε-caprolactone) composites by adding carbon black and graphene nano-plates. Polym Int. 2023; 72(7): 619-628. doi:10.1002/pi.6514
- 43Tao JR, Luo CL, Huang ML, Weng YX, Wang M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Compos Part A Appl Sci Manuf. 2023; 164:107304. doi:10.1016/j.compositesa.2022.107304
- 44Tao JR, Tang XH, He QM, Wang M. Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/poly(ε-caprolactone) composites. Compos Sci Technol. 2022; 229:109715. doi:10.1016/j.compscitech.2022.109715
- 45Huang ML, Shi YD, Wang M. A comparative study on nanoparticle network-dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites. Polym Compos. 2023; 44(2): 1188-1200. doi:10.1002/pc.27163
- 46Liu X, Yin X, Kong L, et al. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon. 2014; 68: 501-510. doi:10.1016/j.carbon.2013.11.027
- 47Gahlout P, Choudhary V. 5-Sulfoisophthalic acid monolithium salt doped polypyrrole/multiwalled carbon nanotubes composites for EMI shielding application in X-band (8.2-12.4 GHz). J Appl Polym Sci. 2017; 134(40): 45370. doi:10.1002/app.45370
- 48Kundalwal SI, Rathi A. Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique. J Mech Behav Mater. 2020; 29(1): 77-85. doi:10.1515/jmbm-2020-0008
10.1515/jmbm-2020-0008 Google Scholar
- 49Ghasemi AR, Mohammadi MM, Mohandes M. The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses. Compos B: Eng. 2015; 77: 519-527. doi:10.1016/j.compositesb.2015.03.065
- 50Saba N, Jawaid M. A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J Ind Eng Chem. 2018; 67: 1-11. doi:10.1016/j.jiec.2018.06.018
- 51Ulus H, Üstün T, Eskizeybek V, Şahin ÖS, Avci A, Ekrem M. Boron nitride-MWCNT/epoxy hybrid nanocomposites: preparation and mechanical properties. Appl Surf Sci. 2014; 318: 37-42. doi:10.1016/j.apsusc.2013.12.070
- 52Kumar A, Sharma K, Dixit AR. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 2021; 31(2): 149-165. doi:10.1007/s42823-020-00161-x
- 53Kundalwal SI, Ray MC. Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes. J Mech Mater Struct. 2014; 9(1): 1-25. doi:10.2140/jomms.2014.9.1
- 54Kundalwal SI, Ray MC. Thermoelastic properties of a novel fuzzy fiber-reinforced composite. J Appl Mech. 2013; 80(6):061011. doi:10.1115/1.4023691/370366
- 55Kundalwal SI, Suresh Kumar R, Ray MC. Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int J Heat Mass Transf. 2014; 72: 440-451. doi:10.1016/j.ijheatmasstransfer.2014.01.025
- 56Nevhal SK, Gupta M, Kundalwal SI. Polarization in the van der Waals–bonded graphene/hBN heterostructures with triangular pores. Acta Mech. 2023; 234: 3469-3482. doi:10.1007/s00707-023-03568-5
- 57Gupta M, Patil ND, Kundalwal SI. Active damping of multiscale composite shells using sinus theory incorporated with Murakami's zig-zag function. Thin-Walled Struct. 2023; 191:111063. doi:10.1016/j.tws.2023.111063
- 58Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996; 381(6584): 678-680. doi:10.1038/381678a0
- 59Mikhalchan A, Vilatela JJ. A perspective on high-performance CNT fibres for structural composites. Carbon. 2019; 150: 191-215. doi:10.1016/j.carbon.2019.04.113
- 60Gupta M, Patil ND, Kundalwal SI. Influence of CNT waviness on the effective young's modulus of multiscale hybrid composite. AIP Conf Proc. 2023; 2745(1):030006. doi:10.1063/5.0132336
10.1063/5.0132336 Google Scholar
- 61Kundalwal SI, Gupta M. Interdependent effects of surface and flexoelectricity on the electromechanical behavior of BNRC nanoplate. Mech Mater. 2022; 175:104483. doi:10.1016/j.mechmat.2022.104483
- 62Shokrieh MM, Rafiee R. A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Compos Mater. 2010; 46(2): 155-172. doi:10.1007/S11029-010-9135-0
- 63Chen XL, Liu YJ. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput Mater Sci. 2004; 29(1): 1-11. doi:10.1016/S0927-0256(03)00090-9
- 64Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol. 2010; 70(16): 2237-2241. doi:10.1016/j.compscitech.2010.05.004
- 65Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon. 2010; 48(3): 788-796. doi:10.1016/j.carbon.2009.10.028
- 66Zheng Q, Wang J, Yu M, Cao WQ, Zhai H, Cao MS. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon. 2023; 210:118049. doi:10.1016/j.carbon.2023.118049
- 67Zheng Q, Cao WQ, Zhai H, Cao MS. Tailoring carbon-based nanofiber microstructures for electromagnetic absorption, shielding, and devices. Mater Chem Front. 2023; 7(9): 1737-1759. doi:10.1039/d2qm01271e
- 68Clingerman ML, King JA, Schulz KH, Meyers JD. Evaluation of electrical conductivity models for conductive polymer composites. J Appl Polym Sci. 2002; 83(6): 1341-1356. doi:10.1002/app.10014
- 69Gupta M, Ray MC, Patil ND, Kundalwal SI. Smart damping of a simply supported laminated CNT-based hybrid composite plate using FE approach. Thin-Walled Struct. 2022; 171:108782. doi:10.1016/j.tws.2021.108782
- 70Sudduth RD. A percolation threshold model that effectively characterizes the full concentration range for electrical-conducting polymer composites. J Appl Polym Sci. 2019; 136(11): 47184. doi:10.1002/app.47184
- 71Gholampoor M, Movassagh-Alanagh F, Salimkhani H. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci. 2017; 64: 51-61. doi:10.1016/j.solidstatesciences.2016.12.005
- 72Arjmand M, Apperley T, Okoniewski M, Sundararaj U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon. 2012; 50(14): 5126-5134. doi:10.1016/j.carbon.2012.06.053
- 73Huang Y, Li N, Ma Y, et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon. 2007; 45(8): 1614-1621. doi:10.1016/j.carbon.2007.04.016