Spherical calcium phosphate nanoparticle fillers allow polymer processing of bone fixation devices with high bioactivity
Dirk Mohn
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
Both the authors contributed equally to this work.
Search for more papers by this authorDuygu Ege
Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
Both the authors contributed equally to this work.
Search for more papers by this authorKirill Feldman
Department of Materials, Institute of Polymer Technology, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorOliver D. Schneider
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorThomas Imfeld
Department of Preventive Dentistry, Periodontology, and Cariology, University of Zurich Center of Dental Medicine, 8032 Zurich, Switzerland
Search for more papers by this authorAldo R. Boccaccini
Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
Search for more papers by this authorCorresponding Author
Wendelin J. Stark
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, SwitzerlandSearch for more papers by this authorDirk Mohn
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
Both the authors contributed equally to this work.
Search for more papers by this authorDuygu Ege
Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
Both the authors contributed equally to this work.
Search for more papers by this authorKirill Feldman
Department of Materials, Institute of Polymer Technology, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorOliver D. Schneider
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
Search for more papers by this authorThomas Imfeld
Department of Preventive Dentistry, Periodontology, and Cariology, University of Zurich Center of Dental Medicine, 8032 Zurich, Switzerland
Search for more papers by this authorAldo R. Boccaccini
Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
Search for more papers by this authorCorresponding Author
Wendelin J. Stark
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, SwitzerlandSearch for more papers by this authorAbstract
Treatment of bone defects generally requires a fixation device. Biodegradable implants can often prevent second operations in contrast to metallic implants that are surgically removed after healing. In this study, we investigate the preparation of a bone fixation device with additional bioactivity by adding nanoparticulate amorphous tricalcium phosphate (ATCP) to improve bonding to bone. Medically approved poly(lactide-co-glycolide) (PLGA) and spherical (ATCP) nanoparticles were blended directly or through a two-step approach, where ATCP was first dispersed in PLGA by solvent casting, extruded and hot pressed producing blocks and bone screws. The latter route yielded good particle dispersion while blending alone led to inhomogeneous mixtures. Samples were immersed in simulated body fluid and showed rapid formation of surface hydroxyapatite layers (examined by X-ray diffraction and scanning electron microscopy) already after 3 days, thus confirming very high bioactivity. Polymer degradation during processing and upon simulated implantation conditions was followed by gel permeation chromatography. The elevated temperature during extrusion was the strongest single factor contributing to PLGA degradation. Screws could be machined out of extruded cylinders and demonstrated the ability to process PLGA/ATCP 90/10 composites with regular workshop tools. These properties suggest the use of such composites as improved, bioactive, and degradable bone fixation systems particularly in oral and maxillofacial surgery. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers
REFERENCES
- 1 K.A. Athanasiou,C.M. Agrawal,F.A. Barber, and S.S.Burkhart, Arthroscopy, 14, 7( 1998).
- 2 D.W. Hutmacher, Biomaterials, 21, 24( 2000).
- 3 L.L. Hench, J. Am. Ceram. Soc., 74, 7( 1991).
- 4 B.L. Eppley,L. Morales,R. Wood,J. Pensler,J. Goldstein,R.J. Havlik,M. Habal,A. Losken,J.K. Williams,F.Burstein,A.A. Rozzelle, and A.M. Sadove, Plast. Reconstr. Surg., 114, 4( 2004).
- 5 P.U. Rokkanen,O. Bostman,E. Hirvensalo,E.A. Makela,E.K. Partio,H. Patiala,S. Vainionpaa,K. Vihtonen, and P. Tormala, Biomaterials, 21, 24( 2000).
- 6 J.W. Leenslag,A.J. Pennings,R.R.M. Bos,F.R. Rozema, and G. Boering, Biomaterials, 8, 1( 1987).
- 7 K. Bessho,T. Iizuka, and K.I. Murakami, J. Oral Maxillofac. Surg., 55, 9( 1997).
- 8 J.C. Middleton and A.J. Tipton, Biomaterials, 21, 23( 2000).
- 9 A.A. Ignatius and L.E. Claes, Biomaterials, 17, 8( 1996).
- 10 O. Bostman and H. Pihlajamaki, Biomaterials, 21, 24( 2000).
- 11 J. Panyam and V. Labhasetwar, Adv. Drug. Deliv. Rev., 55, 3( 2003).
- 12 T. Hadlock,C. Sundback,D. Hunter,M. Cheney, and J.P. Vacanti, Tissue. Eng., 6, 2( 2000).
- 13 J.E. Bergsma,W.C. Debruijn,F.R. Rozema,R.R.M. Bos, and G. Boering, Biomaterials, 16, 1( 1995).
- 14 K. Rezwan,Q.Z. Chen,J.J. Blaker, and A.R. Boccaccini, Biomaterials, 27, 18( 2006).
- 15 H.W. Kim,J.C. Knowles, and H.E. Kim, Biomaterials, 25, 7( 2004).
- 16 W. Heidemann,S. Jeschkeit,K. Ruffieux,J.H. Fischer,M. Wagner,G. Kruger,E. Wintermantel, and K.L. Gerlach, Biomaterials, 22, 17( 2001).
- 17 J.A. Roether,A.R. Boccaccini,L.L. Hench,V. Maquet,S. Gautier, and R. Jerome, Biomaterials, 23, 18( 2002).
- 18 M. Jarcho, Clin. Orthop. Rel. Res., 157 ( 1981).
- 19
E.D. Eanes,
Calcium Phosphates in Biological and Industrial Systems,
Kluwer,
Boston,
21(
1998).
10.1007/978-1-4615-5517-9_2 Google Scholar
- 20
M.S. Tung,
Calcium Phosphates in Biological and Industrial Systems,
Kluwer,
Boston,
1(
1998).
10.1007/978-1-4615-5517-9_1 Google Scholar
- 21 A.S. Dunn,P.G. Campbell, and K.G. Marra, J. Mater. Sci., Mater. Med., 12, 8( 2001).
- 22 A.R. Boccaccini and V. Maquet, Compos. Sci. Technol., 63, 16( 2003).
- 23 H.Y. Li and J. Chang, Compos. Sci. Technol., 65, 14( 2005).
- 24 F.H. Lin,T.M. Chen,C.P. Lin, and C.J. Lee, Artif. Organs, 23, 2( 1999).
- 25 J.H. Yu,G.Q. Wang,J.F. Chen,X.F. Zeng, and W.Y. Wang, Polym. Eng. Sci., 47, 3( 2007).
- 26 S. Loher,V. Reboul,T.J. Brunner,M. Simonet,C. Dora,P. Neuenschwander, and W.J. Stark, Nanotechnology, 17, 8( 2006).
- 27 S.K. Misra,D. Mohn,T.J. Brunner,W.J. Stark,S.E. Philip,I. Roy,V. Salih,J.C. Knowles, and A.R. Boccaccini, Biomaterials, 29, 12( 2008).
- 28 H.N. Liu,E.B. Slamovich, and T.J. Webster, Nanotechnology, 16, 7( 2005).
- 29 T.J. Webster,C. Ergun,R.H. Doremus,R.W. Siegel, and R. Bizios, Biomaterials, 21, 17( 2000).
- 30 D.A. Puleo and A. Nanci, Biomaterials, 20, 23( 1999).
- 31 L. Madler,H.K. Kammler,R. Mueller, and S.E. Pratsinis, J.Aerosol. Sci., 33, 2( 2002).
- 32 S. Loher,W.J. Stark,M. Maciejewski,A. Baiker,S.E. Pratsinis,D. Reichardt,F. Maspero,F. Krumeich, and D. Gunther, Chem. Mater., 17, 1( 2005).
- 33 ISO965. General Purpose Metric Screw Threads—Tolerances - Part 1: Principles and Basic Data, Institute for Standardization ( 1998).
- 34 L.K. Limbach,Y.C. Li,R.N. Grass,T.J. Brunner,M.A. Hintermann,M. Muller,D. Gunther, and W.J. Stark, Environ. Sci. Technol., 39, 23( 2005).
- 35 T. Kokubo,H. Kushitani,S. Sakka,T. Kitsugi, and T. Yamamuro, J. Biomed. Mater. Res., 24, 6( 1990).
- 36 M. Staiger,P. Bowen,J. Ketterer, and J. Bohonek, J. Dispersion Sci. Technol., 23, 5( 2002).
- 37 F.E. Kruis,K.A. Kusters,S.E. Pratsinis, and B. Scarlett, Aerosol. Sci. Technol., 19, 4( 1993).
- 38 O.D. Schneider,S. Loher,T.J. Brunner,L. Uebersax,M. Simonet,R.N. Grass,H.P. Merkle, and W.J. Stark, J. Biomed. Mater. Res. Part B, 84, 2( 2008).
- 39 N.J. Cotton,M.J. Egan, and J.E. Brunelle, J. Biomed. Mater. Res. Part A, 85, 1( 2008).
- 40 A.A. Ignatius,P. Augat, and L.E. Claes, J. Biomater. Sci., Polym. Ed., 12, 2( 2001).
- 41 C. Verheyen,J.R. Dewijn,C.A. Vanblitterswijk,K. Degroot, and P.M. Rozing, J. Biomed. Mater. Res., 27, 4( 1993).
- 42 M. Bohner, J. Mater. Chem., 17, 38( 2007).
- 43 T.J. Brunner,R.N. Grass,M. Bohner, and W.J. Stark, J. Mater. Chem., 17, 38( 2007).
- 44 L. Jiang,E. Morelius,J.W. Zhang,M. Wolcott, and J. Holbery, J. Compos Mater., 42, 24( 2008).
- 45 M.S. Widmer,P.K. Gupta,L.C. Lu,R.K. Meszlenyi,G.R.D. Evans,K. Brandt,T. Savel,A. Gurlek,C.W. Patrick, and A.G. Mikos, Biomaterials, 19, 21( 1998).
- 46 L. Fambri,A. Pegoretti,R. Fenner,S.D. Incardona, and C. Migliaresi, Polymer, 38, 1( 1997).
- 47 A.L. Boskey and A.S. Posner, J. Phys. Chem., 77, 19( 1973).
- 48 J.L. Meyer and E.D. Eanes, Calcif. Tissue. Int., 25, 1( 1978).
- 49 S.V. Dorozhkin and M. Epple, Angew. Chem.-Int. Edit., 41, 17( 2002).
- 50 L.M. Ehrenfried,M.H. Patel, and R.E. Cameron, J. Mater. Sci.-Mater. Med., 19, 1( 2008).
- 51 J.P. Penning,H. Dijkstra, and A.J. Pennings, Polymer, 34, 5( 1993).
- 52 R. Von Oepen and W. Michaeli, Clin. Mater., 10, 1( 1992).
- 53 C.M. Agrawal and K.A. Athanasiou, J. Biomed. Mater. Res., 38, 2( 1997).
- 54 M. Ara,M. Watanabe, and Y. Imai, Biomaterials, 23, 12( 2002).