Waste material fly ash as an alternative filler for elastomers
Hassarutai Yangthong
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorKwanchai Buaksuntear
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorSupitta Suethao
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorArkadiusz Chworos
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
Search for more papers by this authorCorresponding Author
Wirasak Smitthipong
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Office of Research Integration on Target-Based Natural Rubber, National Research Council of Thailand (NRCT), Bangkok, Thailand
Correspondence
Wirasak Smitthipong, Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
Email: [email protected]
Search for more papers by this authorHassarutai Yangthong
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorKwanchai Buaksuntear
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorSupitta Suethao
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorArkadiusz Chworos
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
Search for more papers by this authorCorresponding Author
Wirasak Smitthipong
Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
Office of Research Integration on Target-Based Natural Rubber, National Research Council of Thailand (NRCT), Bangkok, Thailand
Correspondence
Wirasak Smitthipong, Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
Email: [email protected]
Search for more papers by this authorAbstract
Fly ash (FA), a by-product of the power generation industry, can potentially be used as a filler in polymer products. Particularly, FA has been investigated as an alternative filler to partially or fully replace commercial fillers in polymer composites. This mini-review discusses the fundamental properties of FA, environmental pollution from commercial fillers, and the performance of FA in polymers. The properties of FA-loaded polymer composites are discussed, including the morphological, rheological, mechanical, and thermal properties. This review highlights the potential methods and challenges for substituting, or replacing, commercial fillers in various polymers such as natural rubber (NR), epoxidized NR, epoxy, styrene-butadiene rubber (SBR), NR/SBR blends, polyethylene, polypropylene, and polyester.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors
REFERENCES
- 1Callery S. Carbon dioxide. https://climate.nasa.gov/vital-signs/carbon-dioxide/ Accessed September 2022.
- 2 TW Kana, ed. Greenhouse Effect, Sea Level Rise, and Coastal Wetlands. ProQuest, UMI Dissertation Publishing; 1988.
- 3 Overview of greenhouse gases homepage. https://www.epa.gov/ghgemissions/overview-greenhouse-gases Accessed September 2022.
- 4Kijewska A, Bluszcz A. Research of varying levels of greenhouse gas emissions in European countries using the k-means method. Atmos Pollut Res. 2016; 7: 935-944.
- 5Waddell WH, Evans LR. Use of nonblack fillers in tire compounds. Rubber Chem Technol. 1996; 69: 377-423.
- 6Dannenberg E. Filler choices in the rubber industry. Rubber Chem Technol. 1982; 55: 860-880.
- 7Fan Y, Fowler GD, Zhao M. The past, present and future of carbon black as a rubber reinforcing filler—a review. J Clean Prod. 2020; 247:119115.
- 8 International carbon black association (ICBA) homepage. https://www.carbon-black.org/ Accessed September 2022.
- 9Morfeld P, Büchte SF, Wellmann J, McCunney RJ, Piekarski C. Lung cancer mortality and carbon black exposure: cox regression analysis of a cohort from a German carbon black production plant. J Occup Environ Med. 2006; 48: 1230-1241.
- 10Morfeld P, McCunney RJ. Carbon black and lung cancer: testing a new exposure metric in a German cohort. Am J Ind Med. 2007; 50: 565-567.
- 11 Global specialty silica market size report. https://www.grandviewresearch.com/industry-analysis/specialty-silica-market Accessed September 2022.
- 12 Specialty carbon black market size report. https://www.grandviewresearch.com/industry-analysis/specialty-carbon-black-market Accessed September 2022.
- 13Ooi ZX, Ismail H, Bakar AA. Study on the ageing characteristics of oil palm ash reinforced natural rubber composites by introducing a liquid epoxidized natural rubber coating technique. Polym Test. 2014; 37: 156-162.
- 14Abdullah C, Ismail I, Nurul Fazita M, et al. Properties and interfacial bonding enhancement of oil palm bio-ash nanoparticles biocomposites. Polymers. 2021; 13:1615.
- 15Ezenkwa OE, Hassan A, Samsudin SA. Mechanical properties of rice husk and rice husk ash filled maleated polymers compatibilized polypropylene composites. J Appl Polym Sci. 2022; 139:51702.
- 16 AIP Conf. In: N Ibrahim, AHM Shokri, D Kamarun, AF Mohd, eds. Cure Characteristic and Mechanical Properties of Natural Rubber Vulcanizates with Digested Rice Husk Ash (RHA). AIP Publishing LLC; 2018.
- 17Yangthong H, Nun-anan P, Faibunchan P, Karrila S, Limhengha S. The enhancement of cure and mechanical properties of natural rubber vulcanizates with waste Aquilaria crassna wood. Ind Crop Prod. 2021; 171:113922.
- 18Fan Y, Fowler GD, Norris C. Potential of a pyrolytic coconut Shell as a sustainable biofiller for styrene–butadiene rubber. Ind Eng Chem Res. 2017; 56: 4779-4791.
- 19Agunsoye JO, Isaac TS, Samuel SO. Study of mechanical behaviour of coconut Shell reinforced polymer matrix composite. JMMCE. 2012; 11: 774-779.
10.4236/jmmce.2012.118065 Google Scholar
- 20Zabihi O, Ahmadi M, Yadav R, et al. Novel phosphorous-based deep eutectic solvents for the production of recyclable macadamia nutshell–polymer biocomposites with improved mechanical and fire safety performances. ACS Sustain Chem Eng. 2021; 9: 4463-4476.
- 21Thongsang S, Sombatsompop N. Effect of NaOH and Si69 treatments on the properties of fly ash/natural rubber composites. Polym Compos. 2006; 27: 30-40.
- 22Yangthong H, Pichaiyut S, Jumrat S, Wisunthorn S, Nakason C. Novel natural rubber composites with geopolymer filler. Adv Polym Technol. 2018; 37: 2651-2662.
- 23Potgieter H, Liauw CM, Velado D. Effect of fly ash washing conditions on the properties of coupling agent modified polypropylene/fly ash composites. Polym Compos. 2014; 35: 698-707.
- 24Bhardwaj P, Panjabi RO, Nade OA, Gopalan V, Pragasam V, Salunke DR. Investigations on tensile and flexural behaviors of sugarcane fiber/boron nitride/fly ash reinforced polymer matrix composite. Polym Compos. 2022; 43: 1730-1741.
- 25Ginting EM, Bukit N, Frida E, Bukit BF. The effect of carbon black composition in natural rubber compound. Case Stud Therm Eng. 2020; 17:100575.
- 26Ibadullayev A, Teshabayeva E, Kakharov B, Nigmatova D. Composite elastomeric materials filled with modified mineral fillers. EDP Sci. 2021; 264:5006.
- 27Alfatah T, Mistar EM, Syabriyana M, Supardan MD. Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. Alex Eng J. 2022; 61: 4945-4962.
- 28Halip JA, Lee SH, Tahir PM, Chuan LT, Selimin MA, Saffian HA. A review: chemical treatments of rice husk for polymer composites. Biointerface Res Appl Chem. 2021; 11: 12425-12433.
- 29Moosa AA, Saddam B. Synthesis and characterization of nanosilica from rice husk with applications to polymer composites. Am J Mater Sci. 2017; 7: 223.
- 30Pongdong W, Kummerlöwe C, Vennemann N, Thitithammawong A, Nakason C. Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: influences of RHA loading. Polym Test. 2016; 53: 245-256.
- 31Pongdong W, Nakason C, Kummerlöwe C, Vennemann N. Influence of filler from a renewable resource and Silane coupling agent on the properties of epoxidized natural rubber vulcanizates. J Chem. 2015; 2015: 2015.
- 32Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cem Concr Res. 2015; 78: 110-125.
- 33Chávez-Valdez A, Arizmendi-Morquecho A, Vargas G, Almanza J, Alvarez-Quintana J. Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Mater. 2011; 59: 2556-2562.
- 34Awomeso J, Taiwo A, Gbadebo A, Arimoro A. Waste disposal and pollution Management in Urban Areas: a workable remedy for the environment in developing countries. Am J Environ Sci. 2010; 6: 26-32.
- 35Siddique R. Performance characteristics of high-volume class F fly ash concrete. Cem Concr Res. 2004; 34: 487-493.
- 36de Medeiros JF, Garlet TB, Ribeiro JLD, Cortimiglia MN. Success factors for environmentally sustainable product innovation: an updated review. J Clean Prod. 2022; 345:131039.
- 37 Sustainable product trends. https://www.junglescout.com/blog/sustainable-product-trends-and-sales/ Accessed September 2022.
- 38 The rise of the eco-friendly consumer. https://www.strategy-business.com/article/The-rise-of-the-eco-friendly-consumer Accessed September 2022.
- 39Zhang Y, Liu Q, Zhang Q, Lu Y. Gas barrier properties of natural rubber/kaolin composites prepared by melt blending. Appl Clay Sci. 2010; 50: 255-259.
- 40Robertson CG, Tunnicliffe LB, Maciag L, et al. Characterizing distributions of tensile strength and crack precursor size to evaluate filler dispersion effects and reliability of rubber. Polymers. 2020; 12: 203.
- 41Phuhiangpa N, Ponloa W, Phongphanphanee S, Smitthipong W. Performance of Nano- and Microcalcium carbonate in Uncrosslinked natural rubber composites: new results of structure–properties relationship. Polymers. 2002; 2020: 12.
- 42 PA Ciullo, ed. Industrial Minerals and Their Uses: A Handbook and Formulary. William Andrew; 1996.
- 43Andrews E. Reinforcement of rubber by fillers. Rubber Chem Technol. 1963; 36: 325-336.
10.5254/1.3539561 Google Scholar
- 44Palanikumar K, AshokGandhi R, Raghunath B, Jayaseelan V. Role of calcium carbonate (CaCO3) in improving wear resistance of polypropylene (PP) components used in automobiles. Mater Today Proc. 2019; 16: 1363.
- 45Ma'ali R, Sawalha S, Surkhi O, Hamarsheh A, Yacoub S, Helou S. Improvement of tensile properties of recycled low-density polyethylene by incorporation of calcium carbonate particles. Int J Eng Manag Res. 2018; 8: 195.
- 46Anderson R, Ratcliffe I, Greenwell H, Williams P, Cliffe S, Coveney P. Clay swelling — a challenge in the oilfield. Earth Sci Rev. 2010; 98: 201-216.
- 47Theng B. In: Y Zhu, A Wang, eds. Developments in Clay Science. Elsevier; 2012.
- 48Robertson CG, Hardman NJ. Nature of carbon black reinforcement of rubber: perspective on the original polymer nanocomposite. Polymers. 2021; 13: 538.
- 49Liu D, Chen J, Song L, Lu A, Wang Y, Sun G. Parameterization of silica-filled silicone rubber morphology: a contrast variation SANS and TEM study. Polymer. 2017; 120: 155-163.
- 50Bansal RC, Wang M-J, Donnet J. Carbon Black. 2nd ed. Library of Congress Cataloging-in-Publication Data; 1993.
- 51Zhao G, Shi L, Zhang D, Feng X, Yuan S, Zhuo J. Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater Des. 2012; 35: 847-853.
- 52Islam I, Sultana S, Kumer Ray S, Parvin Nur H, Hossain MT, Ajmotgir WM. Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C J Carbon Res. 2018; 4: 15.
- 53Brunella V, Rossatto BG, Mastropasqua C, Cesano F, Scarano D. Thermal/electrical properties and texture of carbon black PC polymer composites near the electrical percolation threshold. J Compos Sci. 2021; 5: 212.
- 54Huang Y-T, Inomata N, Wang Z, Lin Y-C, Ono T. Flexible porous carbon black-polymer composites with a high gauge factor. Sens Mater. 2020; 32: 2527.
- 55Kaliyappan P, Dhananchezian M, Rajkumar K. Utilization of waste tyre rubber and carbon black to develop a neoprene rubber hybrid composite. Mater Today Proc. 2020; 27: 724.
- 56Shi X, Sun S, Zhao A, et al. Influence of carbon black on the payne effect of filled natural rubber compounds. Compos Sci Technol. 2021; 203:108586.
- 57 Carbon black market report homepage. https://www.ceresana.com/en/market-studies/chemicals/carbon-black/ Accessed September 2022.
- 58Verma A, Baurai K, Sanjay M, Siengchin S. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym Compos. 2020; 41: 338-349.
- 59Dwivedi C, Manjare S, Rajan SK. Recycling of waste tire by pyrolysis to recover carbon black: alternative & environment-friendly reinforcing filler for natural rubber compounds. Compos B Eng. 2020; 200:108346.
- 60Tian X, Zhuang Q, Han S, et al. A novel approach of reapplication of carbon black recovered from waste tyre pyrolysis to rubber composites. J Clean Prod. 2021; 280:124460.
- 61Adhikari B, De D, Maiti S. Reclamation and recycling of waste rubber. Prog Polym Sci. 2000; 25: 909-948.
- 62Wu J, Xing W, Huang G, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer. 2013; 54: 3314-3323.
- 63Moulin L, Da Silva S, Bounaceur A, Herblot M, Soudais Y. Assessment of recovered carbon black obtained by waste tires steam water Thermolysis: an industrial application. Waste Biomass Valorization. 2017; 8: 2757-2770.
- 64Rattanasom N, Saowapark T, Deeprasertkul C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test. 2007; 26: 369-377.
- 65Flörke OW, Graetsch HA, Brunk F, et al. Ullmann's encyclopedia of industrial chemistry. 2000.
- 66Iler KR. Solubility, polymerization, colloid and surface properties and biochemistry of silica. 1979.
- 67Yatsuyanagi F, Suzuki N, Ito M, Kaidou H. Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer. 2001; 42: 9523-9529.
- 68Li Y, Han B, Wen S, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites. Compos A: Appl Sci and Manuf. 2014; 62: 52-59.
- 69Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. 2008; 108: 3893-3957.
- 70Yangthong H, Pichaiyut S, Jumrat S, Wisunthorn S, Nakason C. Mechanical, thermal, morphological, and curing properties of geopolymer filled natural rubber composites. J Appl Polym Sci. 2019; 136:47346.
- 71Yan H, Tian G, Sun K, Zhang Y, Zhang Y. Effect of silane coupling agent on the polymer-filler interaction and mechanical properties of silica-filled NR. J Polym Sci B. 2005; 43: 573-584.
- 72Shui Y, Huang L, Wei C, et al. How the silica determines properties of filled silicone rubber by the formation of filler networking and bound rubber. Compos Sci Technol. 2021; 215:109024.
- 73Pang S, Yu Y, Zhang L, Wu Y. Adjusting silica/rubber interfacial interactions and properties via the click reactions between liquid polybutadiene and silane. Compos Sci Technol. 2021; 213:108903.
- 74Zhang C, Tang Z, Guo B, Zhang L. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos Sci Technol. 2018; 156: 70-77.
- 75Torbati-Fard N, Hosseini SM, Razzaghi-Kashani M. Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polym J. 2020; 52: 1223-1234.
- 76Kapgate BP, Das C, Basu D, Das A, Heinrich G. Rubber composites based on silane-treated stöber silica and nitrile rubber. J Elastomers Plast. 2015; 47: 248-261.
- 77Wang Y-H, Wang W-H, Zhang Z, Xu L, Li P. Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J. 2016; 75: 36-45.
- 78Mahtabani A, Rytöluoto I, Anyszka R, et al. On the silica surface modification and its effect on charge trapping and transport in PP-based dielectric nanocomposites. ACS Appl Polym Mater. 2020; 2: 3148-3160.
- 79Bula K, Klapiszewski Ł, Jesionowski T. A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym Compos. 2015; 36: 913-922.
- 80Salehiyan R, Song HY, Choi WJ, Hyun K. Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from Fourier transform rheology. Macromolecules. 2015; 48: 4669-4679.
- 81Chuayjuljit S, Imvittaya A, Nuchanat N-R, Potiyaraj P. Effects of particle size and amount of carbon black and calcium carbonate on curing characteristics and dynamic mechanical properties of natural rubber. J Met Mater Miner. 2002; 12: 51.
- 82Wang C, Zhao J, Zhao X, Bala H, Wang Z. Synthesis of nanosized calcium carbonate (aragonite) via a polyacrylamide inducing process. Powder Technol. 2006; 163: 134-138.
- 83Jin F-L, Park S-J. Thermo-mechanical behaviors of butadiene rubber reinforced with nano-sized calcium carbonate. Mater Sci Eng A. 2008; 478: 406-408.
- 84Bi W, Goegelein C, Hoch M, Kirchhoff J, Zhao S. Effect of silane coupling agents on the rheology, dynamic and mechanical properties of ethylene propylene diene rubber/calcium carbonate composites. Polymers. 2022; 14: 3393.
- 85Peterson SC. Carbon black replacement in natural rubber composites using dry-milled calcium carbonate, soy protein, and biochar. Process. 2022; 10: 123.
- 86Wongwat S, Yoksan R, Hedenqvist MS. Bio-based thermoplastic natural rubber based on poly(lactic acid)/thermoplastic starch/calcium carbonate nanocomposites. Int J Biol Macromol. 2022; 208: 973-982.
- 87Ritonga AH, Jamarun N, Arief S, Aziz H, Tanjung DA, Isfa B. Improvement of mechanical, thermal, and morphological properties of organo-precipitated calcium carbonate filled LLDPE/cyclic natural rubber composites. Indones J Chem. 2022; 22: 233.
- 88Lockwood F, Van Niekerk J. Parametric study of a carbon black oil furnace. Combust Flame. 1995; 103: 76-90.
- 89Adams R. Pigment papers from the Nuremberg paint congress. Focus Pigment. 2007; 3: 1-3.
- 90Wyss J, Martinek J, Kerins M, et al. Rapid solar-thermal Decarbonization of methane in a fluid-wall aerosol flow reactor—fundamentals and application. Int J Chem React Eng. 2007; 5: 5.
- 91Fulcheri L, Schwob Y. From methane to hydrogen, carbon black and water. Int J Hydrog Energy. 1995; 20: 197-202.
- 92 I.E.A. Tracking industrial energy efficiency and CO2 emissions. IEA. 2007; 2022:87-92.
- 93Sahu D, Kannan G, Vijayaraghavan R. Carbon black particle exhibits size dependent toxicity in human monocytes. Int J Inflam. 2014; 2014: 1-10.
10.1155/2014/827019 Google Scholar
- 94Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicology. 2012; 294: 61-79.
- 95Mou C-Y, Lin H-P. Control of morphology in synthesizing mesoporous silica. Pure Appl Chem. 2000; 72: 137-146.
- 96Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010; 7: 1.
- 97Dwivedi A, Jain MK. Fly ash–waste management and overview: a review. Recent Res Sci Technol. 2014; 6:30-35.
- 98Ahmaruzzaman M. A review on the utilization of fly ash. Prog Energy Combust Sci. 2010; 36: 327-363.
- 99Krainoi A, Sripornsawat B, Toh-ae P, et al. Utilization of high and low calcium oxide fly ashes as the alternative fillers for natural rubber composites: a waste to wealth approach. Ind Crop Prod. 2022; 188:115589.
- 100Ren X, Sancaktar E. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. J Clean Prod. 2019; 206: 374-382.
- 101Zacco A, Borgese L, Gianoncelli A, Struis RP, Depero LE, Bontempi E. Review of fly ash inertisation treatments and recycling. Environ Chem Lett. 2014; 12: 153-175.
- 102Zawisza E, Kuska N. Wodoprzepuszczalność gruntów skarpy abrazyjnej zbiornika czorsztyn-niedzica. Acta Sci Pol Architectura. 2016; 15: 103-407.
- 103Al Bakri A, Abdulkareem OA, Rafiza A, Zarina Y, Norazian M, Kamarudin H. Review on processing of low calcium fly ash geopolymer concrete. Aust J Basic Appl Sci. 2013; 7: 342.
- 104Zhou H, Bhattarai R, Li Y, et al. Towards sustainable coal industry: turning coal bottom ash into wealth. Sci Total Environ. 2022; 804:149985.
- 105Thomas M. Supplementary Cementing Materials in Concrete. CRC press; 2013.
10.1201/b14493 Google Scholar
- 106Ma J, Wang D, Zhao S, Duan P, Yang S. Influence of particle morphology of ground Fly ash on the fluidity and strength of cement paste. Materials. 2021; 14: 283.
- 107Davison RL, Natusch DF, Wallace JR, Evans CA Jr. Trace elements in fly ash. Dependence of concentration on particle size. Environ Sci Technol. 1974; 8: 1107-1113.
- 108Nguyen LT, Vu CM, Phuc BT, Tung NH. Simultaneous effects of silanized coal fly ash and nano/micro glass fiber on fracture toughness and mechanical properties of carbon fiber-reinforced vinyl ester resin composites. Polym Eng Sci. 2019; 59: 584-591.
- 109Wang Q, Wang D, Chen H. The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cem Concr Compos. 2017; 83: 125-137.
- 110Panda L, Dash S. Characterization and utilization of coal fly ash: a review. Emerg Mater Res. 2020; 9: 921-934.
- 111Roy WR, Thiery RG, Schuller RM, Suloway JJ. Illinois state geological survey. Environ Geol. 1981; 96:6-7.
- 112Mattigod S, Rai D, Eary L, Ainsworth C. Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. J Environ Qual. 1990; 19: 188-201.
- 113Amran M, Fediuk R, Murali G, et al. Fly ash-based eco-efficient concretes: a comprehensive review of the short-term properties. Materials. 2021; 14: 4264.
- 114Vassilev SV, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona MR. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes☆. Fuel. 2003; 82: 1793-1811.
- 115Danish A, Mosaberpanah MA. Formation mechanism and applications of cenospheres: a review. J Mater Sci. 2020; 55: 4539-4557.
- 116Suraneni P, Burris L, Shearer CR, Hooton RD. ASTM C618 fly ash specification: comparison with other specifications, shortcomings, and solutions. ACI Mater J. 2021; 118: 157.
- 117Wang H, Zheng K, Zhang X, et al. Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport. J Mater Sci. 2018; 53: 6042-6052.
- 118Bhatt A, Priyadarshini S, Mohanakrishnan AA, Abri A, Sattler M, Techapaphawit S. Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater. 2019; 11: 11.
- 119Ajorloo M, Ghodrat M, Kang W-H. Incorporation of recycled polypropylene and fly ash in polypropylene-based composites for automotive applications. J Polym Environ. 2021; 29: 1298-1309.
- 120Rohatgi P, Daoud A, Schultz B, Puri T. Microstructure and mechanical behavior of die casting AZ91D-fly ash cenosphere composites. Compos Part A Appl Sci Manuf. 2009; 40: 883-896.
- 121Bajukov O, Anshits N, Petrov M, Balaev A, Anshits A. Composition of ferrospinel phase and magnetic properties of microspheres and cenospheres from fly ashes. Mater Chem Phys. 2009; 114: 495-503.
- 122Żyrkowski M, Neto RC, Santos LF, Witkowski K. Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel. 2016; 174: 49-53.
- 123Vassilev SV, Menendez R, Diaz-Somoano M, Martinez-Tarazona MR. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates. Fuel. 2004; 83: 585-603.
- 124Siyal AA, Azizli KA, Ismail L, Man Z, Khan MI. Suitability of malaysian fly ash for geopolymer synthesis. Adv Mater Res. 2016; 1133: 201-205.
10.4028/www.scientific.net/AMR.1133.201 Google Scholar
- 125Anandhan S, Sundar SM, Senthil T, Mahendran A, Shibulal G. Extruded poly (ethylene-co-octene)/fly ash composites–value added products from an environmental pollutant. J Polym Res. 2012; 19: 1.
- 126Ahmed SFU, Maalej M, Paramasivam P. Flexural responses of hybrid steel–polyethylene fiber reinforced cement composites containing high volume fly ash. Constr Build Mater. 2007; 21: 1088-1097.
- 127Lockhorn D, Klüppel M. Structure–property relationships of silica/silane formulations in natural rubber, isoprene rubber and styrene–butadiene rubber composites. J Appl Polym Sci. 2020; 137:48435.
- 128Sombatsompop N, Wimolmala E, Markpin T. Fly-ash particles and precipitated silica as fillers in rubbers. II. Effects of silica content and Si69-treatment in natural rubber/styrene–butadiene rubber vulcanizates. J Appl Polym Sci. 2007; 104: 3396-3405.
- 129Surya I, Ismail H, Azura A. The comparison of alkanolamide and silane coupling agent on the properties of silica-filled natural rubber (SMR-L) compounds. Polym Test. 2014; 40: 24-32.
- 130Bonda S, Mohanty S, Nayak SK. Viscoelastic, mechanical, and thermal characterization of fly ash-filled ABS composites and comparison of fly ash surface treatments. Polym Compos. 2012; 33: 22-34.
- 131Lee SY, Kim JS, Lim SH, et al. The investigation of the silica-reinforced rubber polymers with the methoxy type silane coupling agents. Polymers. 2020; 12: 3058.
- 132Das S, Chattopadhyay S, Dhanania S, Bhowmick AK. Improved dispersion and physico-mechanical properties of rubber/silica composites through new silane grafting. Polym Eng Sci. 2020; 60: 3115-3134.
- 133Alkadasi NA, Hundiwale D, Kapadi U. Effect of coupling agent on the mechanical properties of fly ash-filled polybutadiene rubber. J Appl Polym Sci. 2004; 91: 1322-1328.
- 134Gohatre OK, Biswal M, Mohanty S, Nayak SK. Effect of silane treated fly ash on physico-mechanical, morphological, and thermal properties of recycled poly(vinyl chloride) composites. J Appl Polym Sci. 2021; 138:50387.
- 135Murayama N, Yamamoto H, Shibata J. Zeolite synthesis from coal fly ash by hydrothermal reaction using various alkali sources. J Chem Technol Biotechnol. 2002; 77: 280-286.
- 136Thongsang S, Sombatsompop N. Dynamic rebound behavior of silica/natural rubber composites: fly ash particles and precipitated silica. J Macromol Sci B Phys. 2007; 46: 825-840.
- 137Hundiwale D, Kapadi U, Desai M, Bidkar S. Mechanical properties of natural rubber filled with flyash. J Appl Polym Sci. 2002; 85: 995-1001.
- 138Saowapark T, Sombatsompop N, Sirisinha C. Viscoelastic properties of fly ash-filled natural rubber compounds: effect of fly ash loading. J Appl Polym Sci. 2009; 112: 2552-2558.
- 139Thongsang S, Sombatsompop N, Ansarifar A. Effect of fly ash silica and precipitated silica fillers on the viscosity, cure, and viscoelastic properties of natural rubber. Polym Adv Technol. 2008; 19: 1296-1304.
- 140Yangthong H, Wisunthorn S, Pichaiyut S, Nakason C. Novel epoxidized natural rubber composites with geopolymers from fly ash waste. Waste Manag. 2019; 87: 148-160.
- 141Sombatsompop N, Thongsang S, Markpin T, Wimolmala E. Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene-butadiene rubber compounds. J Appl Polym Sci. 2004; 93: 2119-2130.
- 142Paul KT, Pabi S, Chakraborty K, Nando G. Nanostructured fly ash-styrene butadiene rubber hybrid nanocomposites. Polym Compos. 2009; 30: 1647-1656.
- 143Orczykowski W, Bieliński DM, Anyszka R, Pędzich Z. Fly ash from lignite combustion as a filler for rubber mixes. Part I: physical valorization of fly ash. Materials. 2022; 15: 4869.
- 144Ma C, Wu Y, Zheng H, et al. Preparation of nitrile butadiene rubber/fly ashcomposites by designing a surficial immobile layer. Polym Compos. 2022; 43: 7817-7825.
- 145Ez-Zahraoui S, Sabir S, Berchane S, et al. Toughening effect ofthermoplastic polyurethaneelastomer on the properties of fly ash-reinforcedpolypropylene-basedcomposites. Polym Compos. 2023; 44: 1534-1545.
- 146Atikler U, Basalp D, Tihminlioğlu F. Mechanical and morphological properties of recycled high-density polyethylene, filled with calcium carbonate and fly ash. J Appl Polym Sci. 2006; 102: 4460-4467.
- 147Deepthi M, Sharma M, Sailaja R, Anantha P, Sampathkumaran P, Seetharamu S. Mechanical and thermal characteristics of high density polyethylene–fly ash cenospheres composites. Mater Des. 2010; 31: 2051-2060.
- 148Ahmad I, Mahanwar PA. Mechanical properties of fly ash filled high density polyethylene. JMMCE. 2010; 9: 183-198.
10.4236/jmmce.2010.93016 Google Scholar
- 149Satapathy S, Kothapalli RV. Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Env. 2018; 26: 200-213.
- 150Kabir II, Sorrell CC, Mada MR, Cholake ST, Bandyopadhyay S. General model for comparative tensile mechanical properties of composites fabricated from fly ash and virgin/recycled high–density polyethylene. Polym Eng Sci. 2016; 56: 1096.
- 151Guhanathan S, Saroja Devi M. Studies on interface in polyester/fly-ash particulate composites. Compos Interfaces. 2004; 11: 43-66.
- 152Sreekanth M, Bambole V, Mhaske S, Mahanwar P. Effect of particle size and concentration of flyash on properties of polyester thermoplastic elastomer composites. JMMCE. 2009; 8: 237-248.
10.4236/jmmce.2009.83021 Google Scholar
- 153Kumar PN, Rajadurai A, Muthuramalingam T. Multi-response optimization on mechanical properties of silica fly ash filled polyester composites using Taguchi–Grey relational analysis. SILICON. 2018; 10: 1723-1729.
- 154Moulya H, Vasu VK, Praveena B, Rajesh M, Ruthuparna S, Rahul K. Study on acoustic properties of polyester—fly ash cenosphere\nanographene composites. Mater Today Proc. 2022; 52: 1272-1277.
10.1016/j.matpr.2021.11.052 Google Scholar
- 155Gummadi J, Kumar GV, Rajesh G. Evaluation of flexural properties of fly ash filled polypropylene composites. Int J Mod Eng Res. 2012; 2: 2584.
- 156Pardo S, Bernal C, Ares A, Abad M, Cano J. Rheological, thermal, and mechanical characterization of fly ash-thermoplastic composites with different coupling agents. Polym Compos. 2010; 31: 1722-1730.
- 157Raju GM, Madhu G, Khan MA, Reddy PDS. Characterizing and modeling of mechanical properties of epoxy polymer composites reinforced with fly ash. Mater Today Proc. 2018; 5:27998.
10.1016/j.matpr.2018.10.040 Google Scholar
- 158Pattanaik A, Mukherjee M, Mishra S. Influence of curing condition on thermo-mechanical properties of fly ash reinforced epoxy composite. Compos B Eng. 2019; 176:107301.
- 159Tiwari S, Gehlot CL, Srivastava D. Epoxy/fly ash from indian soil chulha/nanoCaCO3 nanocomposite: studies on mechanical and thermal properties. Polym Compos. 2020; 41: 3237-3249.
- 160Sim J, Kang Y, Kim BJ, Park YH, Lee YC. Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers. 2020; 12: 79.
- 161Hegde S, Padmaraj N, Siddesh V, Sunaya T, Kini KA, Sanil VK. Experimental investigation of mechanical sustainability and acoustic performance of fly ash cenosphere/epoxy polymer composites. J King Saud Univ Eng Sci. 2021. https://doi.org/10.1016/j.jksues.2021.11.002.
10.1016/j.jksues.2021.11.002 Google Scholar
- 162Ramakrishna SPPHV, Rai SK. Utilization of flyash as filler for polybutyleneterepthalate-toughened epoxy resin. Polym Eng Sci. 2006; 46: 946-953.
- 163Zheng J, Han D, Ye X, et al. Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer. 2018; 135: 200-210.
- 164Radabutra S, Khemthong P, Saengsuwan S. Effect of silane coupling agent pretreatment on the properties of rice straw particleboard bonded with prevulcanized natural rubber latex. J Rubber Res. 2021; 24: 157-163.
- 165Wang M, Hao X, Wang W. Reinforcing behaviors of sulfur-containing Silane coupling agent in natural rubber-based magnetorheological elastomers with various vulcanization systems. Materials. 2020; 13: 5163.
- 166Matsuoka S. Relaxation Phenomena in Polymers. Hanser Munich; 1992.
- 167López-Manchado M, Arroyo M, Herrero B, Biagiotti J. Vulcanization kinetics of natural rubber-organoclay nanocomposites. J Appl Polym Sci. 2003; 89: 1-15.
- 168Yangthong H, Pichaiyut S, Wisunthorn S, Kummerlöwe C, Vennemann N, Nakason C. Role of geopolymer as a cure activator in sulfur vulcanization of epoxidized natural rubber. J Appl Polym Sci. 2020; 137:48624.
- 169Heidemann G, Noordermeer JW, Datta R, Baarle Bv. Effect of metal oxides as activator for sulphur vulcanisation in various rubbers. KGK Kautsch Gummi Kunstst. 2005; 58: 30.
- 170Zhao S, Xie S, Liu X, et al. Covalent hybrid of graphene and silicon dioxide and reinforcing effect in rubber composites. J Polym Res. 2018; 25: 1.
- 171Ansarifar A, Lim H, Nijhawan R. Assessment of the effect of a bifunctional organosilane on the bound rubber and properties of some natural rubber compounds. Int J Adhes Adhes. 2004; 24: 9-22.
- 172Manna AK, De P, Tripathy D, De S, Peiffer DG. Bonding between precipitated silica and epoxidized natural rubber in the presence of silane coupling agent. J Appl Polym Sci. 1999; 74: 389-398.
- 173Poh Ba, Ng C. Effect of silane coupling agents on the mooney scorch time of silica-filled natural rubber compound. Eur Polym J. 1998; 34: 975-979.
- 174Gahleitner M, Bernreitner K, Neißl W. Correlations between rheological and mechanical properties of mineral filled polypropylene compounds. J Appl Polym Sci. 1994; 53: 283-289.
- 175Chand N, Sharma P, Fahim M. Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene. Mater Sci Eng A. 2010; 527: 5873-5878.
- 176Payne A. Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci. 1965; 9: 2273-2284.
- 177Niedermeier W, Schwaiger B. Performance enhancement in rubber by modern filler systems. KGK Kautsch Gummi Kunsts. 2007; 60: 184.
- 178Roland C. Reinforcement of elastomers. Ref Module Mater Sci Mater Eng. 2016; 1: 1-10.
- 179Nasir M, Poh B, Ng P. Effect of γ-mercaptopropyltrimethoxysilane coupling agent on t90, tensile strength and tear strength of silica-filled NR, NBR and SBR vulcanizates. Eur Polym J. 1988; 24: 961-965.
- 180Herrera-Franco P, Valadez-Gonzalez A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos Part A Appl Sci Manuf. 2004; 35: 339-345.
- 181Sae-Oui P, Sirisinha C, Thepsuwan U, Hatthapanit K. Comparison of reinforcing efficiency between Si-69 and Si-264 in a conventional vulcanization system. Polym Test. 2004; 23: 871-879.
- 182Das A, Stöckelhuber K, Jurk R, Fritzsche J, Klüppel M, Heinrich G. Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon. 2009; 47: 3313-3321.
- 183Payne A, Whittaker R. Low strain dynamic properties of filled rubbers. Rubber Chem Technol. 1971; 44: 440-478.
- 184Orczykowski W, Bieliński DM, Anyszka R, et al. Fly ash from lignite combustion as a filler for rubber mixes—part II: chemical valorisation of Fly ash. Materials. 2022; 15: 5979.
- 185Wang M-J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol. 1998; 71: 520-589.
- 186 P Subham, S Tiwari, eds. Proc. of the International Conference on Advances in Aeronautical and Mechanical Engineering-AME. 2012.